GEORGIA INSTITUTE OF TECHNOLOGY

MAN BYST

The George W. Woodruff School of Mechanical Engineering

Ph.D. Qualifiers Exam - Fall Quarter 1996

TRIBOLOGY				
EX	AM AREA			
	AM AREA			

Assigned Number (**DO NOT SIGN YOUR NAME**)

-- Please sign your name on the back of this page --

GEORGE W. WOODRUFF SCHOOL OF MECHANICAL ENGINEEERING Ph.D. QUALIFYING EXAM-TRIBOLOGY FALL QUARTER 1996

1. In the EHL theory of line contacts, the elastic solid-variable viscosity (E-V) regime is governed by

$$h' = 2.65g_1^{0.54}g_3^{0.06}$$

where

$$h' = \frac{2h_{\min}w}{\mu_o R(u_1 + u_2)}; \qquad g_1 = \left[\frac{2\alpha^2 w^3}{\mu_o R^2(u_1 + u_2)}\right]^{1/2}; \qquad g_3 = \left[\frac{2w^2}{\mu_o ER(u_1 + u_2)}\right]^{1/2}$$

- (a) Identify each of the parameters appearing in the expressions for h', g₁, and g₃.
- (b) Express h_{min} in terms of μ_o , u_1 , u_2 , w, R, E and α
- (c) Based on your result in (b), do changes in the load have a large effect on h_{min}? Does your answer make sense on physical grounds? Explain.
- 2. A shaft of diameter D=60 mm is rotating at 1200 rpm, and is supported by two journal bearings. One bearing is of length L₁=60 mm and clearance C₁=30 μm. The second bearing is of length L₂=30 mm. The two bearings receive oil supply from a common reservoir. For optimal performance it is necessary that each bearing operates at its own maximum minimum-film-thickness, and that the operational temperature in each bearing is the same.
- (a) Determine the clearance of the second bearing, C2, which is necessary to establish the optimal performance stated above.
- (b) Determine the size (specs) of the filter necessary for the system.
- (c) Find the total oil flow; i.e., the necessary pumping capacity.

Note: You have been provided with a graph and a table. Just for the purpose of solving this exam you may perform linear interpolation/extrapolation for entry values that do not appear in the table. In practice this is not recommended.

Reminder: The temperature increase in a journal bearing is directly proportional to $\overline{q_z}$.

- This is a question about polishing and the use of tribological principles to describe the polishing process. Polishing is typically done by 'rubbing' a sample on a paper coated with abrasive particles, usually much harder than the sample. The particles are glued to a paper and the rubbing is done by a rotating platten flooded with lubricating fluid. Polishing produces a roughness on the sample related to the particle sizes, and a subsurface damage. As the particle sizes are decreased by using different cloths, the sample surfaces get smoother and surface damage decreases in extent. Answer the following questions
 - 1. Draw to scale a cross and front section of a sample and polishing paper, after some steady state polishing has been achieved, assuming spherical particles with a size of 100 microns in diameter and the average roughness of the sample surface to be 50 microns. Estimate the roughness of the sample after this polishing.
 - 2. Sketch out the method you would use to estimate the depth of the plasticity beneath the sample surface.

		<u> </u>	QUARTER 1990 - PAGE 4				
1/0	E	ø.	S	$\bar{q_2}$	$f\left(\frac{R}{c}\right)$		
0.25	0.2	75	7. 90	0.40	146.5		
	0.4	61	2.96	0.79	55.3		
	0.6	47	1.12	1.18	23.1		
	0.8	3/	0.27	1.57	7.25		
	c. 9	22	0.075	1.74	2.80		
v.5	0.2	75	2.//	0.38			
	0.4	61	0.81	0.76	39.3		
	86	48	0.33	1.13	/5.3		
	6.8	32	0.094	1.47	6.9		
•	0.9	24	0.032	1.60	1.4		
1. C	0.2	74	0.66	0.32	/2.4		
	0.4	62	0.27	0.64	5.3		
	C.6	50	0.12	0.94	2.8		
	0.8	35	0.045	1.21	1.4		
	0.9	26	0.019	1.28	0.90		
1.5	a 2	72	0.39	0.27	7.3		
	0.4	62	0.16	c.52	3.3		
	0.6	51	0.083	0.76	2.0		
	0.8	38	0.035	0.96	1, 2		
	0.9	27	0.016	1.02	0.80		

TRIBOLOGY Ph.D. QUALIFYING EXAM FALL QUARTER 1996 - PAGE 5

FIGURE 12-14 Chart for minimum-film-thickness variable and eccentricity ratio. The left boundary of the shaded zone defines the optimum h_0 for minimum friction; the right boundary is the optimum h_0 for maximum load. (Raimondi and Boyd.)

Bearing characteristic number, $S = \left(\frac{r}{c}\right)$