

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff
School of Mechanical Engineering

Ph.D. Qualifiers Exam - Fall Semester 2003

Heat Transfer	
EXAM AREA	

Assigned Number (DO NOT SIGN YOUR NAME)

* Please sign your <u>name</u> on the back of this page —

Problem #1

Consider the following situation, where a fin is extended into an air stream (at temperature T_0) in order to carry heat away from a hot surface (at temperature $T_{HOT} > T_0$). There is a heat spreader and an interface material between the hot surface and the base of the fin. Dimensions are given in the figure below. You can assume a unit depth for everything.

There are three materials in the system: two for the base and one for the fin. The thermal properties of the system are given in the figure.

In this problem, the temperature varies only in the x-direction. You can neglect radiation from the fin, and you can also neglect convection and radiation from the interface/heat spreader materials.

- 1. In terms of the parameters given, what time would you use to check the system was in steady-state?
- 2. Let's say we are observing the system at a time much later than the time constant you specified above. Sketch the temperature distribution in the x-direction, between the surface at T_{HOT} and the end of the fin for each of the following three cases:
 - a. $k_1 > k_2$ and a short fin with an adiabatic tip
 - b. $k_1 < k_2$ and a temperature $T_{HOT} > T_{tip} > T_0$ at the end of the non-adiabatic tip
 - c. $k_1 < k_2$ and a very long fin
- 3. What criteria would you use to determine that the fin is "long" or "short" compared to the length over which heat leaves the fin?
- 4. For an infinitely long fin, what is the heat flux away from the surface T_{HOT} . Please provide your answer in terms of the properties and geometry given, the convection coefficient h, and the temperature T_0 .
- 5. Let's say you determine that that fin is sufficiently hot that radiation from the fin is important. The fin is a black body, and exchanges thermal radiation with only the air, which is also a blackbody. Write the differential equation that describes the temperature field in the fin, T(x). You do not need to solve the DEQ.

Problem #2

3.

Consider a vertical channel formed by two smooth parallel plates of height H, spaced a distance b apart in air. The plates are very long in the direction normal to the plane of the paper. Each plate is at a temperature T_w , which is higher than T_i , the air temperature at the channel inlet. Assume the resulting natural convection flow to be laminar.

- (35%) Show the expected profile of the <u>x-component</u> of the velocity, **u**, across the channel at four different x locations from the entrance to the exit. Do this for three cases: H/b >> 1, H/b << 1.
- 2. (35%) Write down the equations and boundary conditions needed to determine u and v components of the flow velocity in general. Write down the appropriate simplified versions of these equations for the cases H/b>>1 and H/b<<1 far away from the leading edge (x=0).
- 3. (30%) Solve for the <u>x-component</u> of the velocity, **u**, far away from the leading edge for H/b>>1.

Problem #3

The roof of a house measures $1x1 \text{ m}^2$ in area. The sky temperature is 300K, and the sun temperature is 5800K, the distance between the earth and the sun is $1.5 \times 10^{11} \text{ m}$ (note the sun diameter is $1.4\times10^9 \text{ m}$ and the earth diameter is $1.3\times10^7 \text{ m}$). Determine the steady-state temperature of the roof at noon. State clearly any assumptions you make in your analysis.

Properties of the roof are: $\varepsilon_{\lambda} = 0.1 \ \lambda < 6 \ \mu m$ and $\varepsilon_{\lambda} = 0.5 \ \lambda > 6 \ \mu m$ and the roof is a diffuse surface.

	actional Blackbody Emission Power Functions F(0-λ)	
1000		
1200	0.00032	
1400	0.00213	
1600	0.00779	
1800	0.01972	
2000	0.03934`	
2200	0.06673	
2400	0.10089	
2600	0.14026	
2800	0.18312	
3000	0.22790	
3200	0.27323	
400	0.31810	
600	0.36174	
800	0.40361	
	0.44338	· — — — — — — — — — — — — — — — — — — —