DEC 20 1095

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff School of Mechanical Engineering

Ph.D. Qualifiers Exam - Fall Quarter 1995

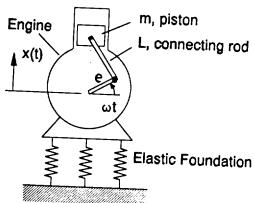
 Dynamics	&	Vibrations
	E	XAM AREA

Assigned Number (DO NOT SIGN YOUR NAME)

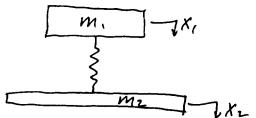
-- Please sign your <u>name</u> on the back of this page --

Dynamics and Vibrations Qualifying Exam, Fall, 1995

Work any 3 of the 4 problems. Show all of your work. Clearly state all assumptions.

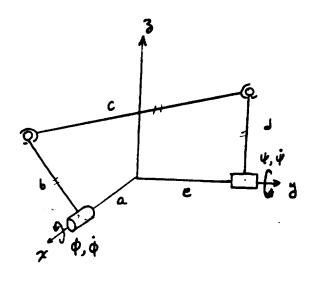

A one-cylinder reciprocating engine rests on a lossless elastic foundation as shown. The total mass of the engine is M while the mass of the piston alone is m. The elastic stiffness of the foundation is k. Assume that the crankarm is massless with length e and that the connecting rod is massless with length L.

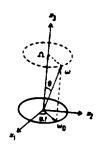
- (a) Considering only the vertical motion and forces for this system, derive the equation of motion for the engine displacement x(t). If possible, simplify the equation of motion assuming that (e/L) < < 1.
- (b) Even if you could not complete part (a), consider the following approximate linear model for the engine:


$$M\ddot{x} + kx = me\omega^{2} [sin(\omega t) - \frac{e}{L}cos(2\omega t)]$$

Find the steady-state response of the engine for the case $\omega = 2\omega_n$.

(c) In terms of ω_n , what are the systems's critical rotation speeds?


The system below represents a model for a device supported on a flexible foundation. The foundation is represented as a free mass.


- 1) Find the natural frequencies of this system.
- 2) Assume that a disturbing force $f(t)=P_0\sin(\omega t)$ is applied to mass m_1 , and derive expressions for the motion of the foundation (m_2) , and for the force transmitted to the foundation.
- 3) For vibration isolation, a general guide is that the natural frequency of the system on its support should be at most one-third the disturbance frequency. Suppose the device, m_1 , weighs 10 times its foundation, m_2 . For a fixed disturbance frequency ω_0 , compare the required natural frequency for vibration isolation of this flexible foundation model to the required natural frequency if the foundation were rigid and fixed in space.

The figure shows a 4-bar spatial RSSR*mechanism. Two revolute joints rotate links b and d that connect to link c by ball and socket joints. Angles ψ and ϕ are assumed known and are measured from the x-y plane using a right-hand rotation. Given the link lengths a, b, ... e find:

- a. The degrees of freedom of the linkage.
- $b.~\dot{\phi}~as~a~function~of~\dot{\psi}~.$
- c. The mechanical advantage for input ψ and output ϕ .

A rigid wheel has principal moments of inertial $I_1 = I_2 \neq I_3$ about its body-fixed principal axes \hat{x}_1 , \hat{x}_2 and \hat{x}_3 , as shown in Fig. 1.179. The wheel is attached at its center of mass to a bearing which allows frictionless sotation about one space-fixed axis. The wheel is "dynamically balanced", i.e. it can rotate at constant $\omega \neq 0$ and exert no torque on its bearing. What conditions must the components of ω satisfy? Sketch the permitted motion(s).

Dynamics & Vibrations Ph.D. Qualifier Exam Fall Quarter 1995 - Page 6