DEC 17 2002

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff
School of Mechanical Engineering

Ph.D. Qualifiers Exam - Fall Semester 2002

Applied Mathematics

EXAM AREA

Assigned Number (DO NOT SIGN YOUR NAME)

■ Please sign your <u>name</u> on the back of this page—

APPLIED MATHEMATICS QUALIFYING EXAMINATION

FALL 2002

Please answer all four of the following four questions!

Be sure to answer all parts of each question.

Show all of your work!

SEPARATION OF VARIABLES:

The partial differential equation below [See eq. (1)] and the boundary conditions (2a and 2b) model the vibration amplitude of a rectangular membrane (dimensions $a \times b$) that is clamped at y=0, b and free at x=0, a, as shown in the picture below. The domain of interest is

$$0 \le x \le a$$
$$0 \le y \le b$$
$$t \ge 0$$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right] \tag{1}$$

where c is a real valued constant.

$$u \mid_{v=0,b} = 0 \qquad \forall x,t \qquad (2a)$$

$$\frac{\partial u}{\partial x}\bigg|_{x=0, a} = 0 \qquad \forall y, t \qquad (2b)$$

<u>a) Appetizer</u>: Is the PDE linear or nonlinear? Is it first order or second order? Justify your choices.

b) Main course: Use the method of separation of variables to find a general solution for u(x,y,t). Define the eigen functions (in x and y) and the corresponding eigen values.

c) Dessert: Sketch the vibration mode shape for the lowest non-trivial mode.

Use simple fixed-point iteration to locate a root of f(x) using initial guess of $x_0 = 2$.

$$f(x) = -x^2 + 2x + 3 = 0$$

(a) If the function is formatted as

$$x=\frac{x^2}{2}-1.5$$

Do you expect to achieve a convergent result? Explain the reason.

- (b) Choose another form of x = g(x) that results in a convergent fixed-point scheme. Perform the computation until ε_t is less 0.1%.
- (c) Please suggest an alternative numerical method that converges faster than the fixed-point iteration and perform the computation until ε_t is less 0.1%.

(Note: please use $x_0 = 2$ as the initial guess in all calculations).

Assume that A is a real $n \times n$ matrix.

- (a) For $A = A^T$:
 - (i) If two eigenvalues are distinct, show their corresponding eigenvectors are orthogonal.
 - (ii) If two eigenvalues are the same, then completely explain the orthogonality and/or nonorthogonality of their corresponding eigenvectors.
- (b) Give an example of a matrix A that does not have a complete set of eigenvectors and show that it is true.
- (c) Show that every matrix A satisfies its own characteristic equation.

Consider a system of n ordinary differential equations (ODEs)

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{A} \cdot \mathbf{x}(t) \quad ,$$

where A is a $n \times n$ constant matrix and $\mathbf{x}(t)$ is a column vector consisting of the n unknowns, $x_1(t)$, $x_2(t)$, $x_n(t)$. Assume that A is NOT a diagonal matrix. Please STATE and PROVE a sufficient condition under which the above system of n ODEs can be transformed into n decoupled first order ODEs (Hint, consider the eigenvalues and eigenvectors of A).