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APPLIED MATHEMATICS QUALIFYING EXAMINATION

FALL 2002

Please answer all four of the following four questions!
Be sure to answer all parts of each question.
Show all of your work!



PROBLEM |

SEPARATION OF VARIABLES:

The partial differential equation below [See eq. (1)] and the boundary conditions
(2a and 2b) model the vibration amplitude of a rectangular membrane

(dimensions a x b) that 1s clamped at y=0, b and free at x=0,a , as shown in the
picture below. The domain of interest 1s

Ly 0<x<a
| 0<y<bh-
b t >0
Fu o FPu F*u 0
0 — = +
7 or* | ox?  5y?
where ¢ 1s a real valued constant.
u |y___0,b =0 Vx,t (2a)
74
- =0 VYt (2b)
ox x=0,a

a) Appetizer: Is the PDE linear or nonlinear? Is it first order or second order?
Justify your choices.

b) Main course: Use the method of separation of variables to find a general

solution for u(x,y,t). Define the eigen functions (in x and y) and the
corresponding eigen values.

c) Dessert: Sketch the vibration mode shape for the lowest non-trivial mode.




PROBLEM 2

Use simple fixed-point iteration to locate a root of f{x) using initial guess of xo = 2.
f(X)==x"+2x+3=0

(a) If the function is formatted as

-

F-

x=2--15

2
Do you expect to achieve a convergent result? Explain the reason.

(b) Choose another form of x = g(x) that results in a convergent fixed-point scheme. Perform the
computation until €; 1s less 0.1%.

(c) Please suggest an alternative numerical method that converges faster than the fixed-point
iteration and perform the computation until g 1s less 0.1%.

(Note: please use xo = 2 as the initial guess in all calculations).



PROBLEM 3

Assume that A is a real n X n matrix.

(a) For A = AT:

(i) If two eigenvalues are distinct, show their corresponding eigen-
vectors are orthogonal.

(ii) If two eigenvalues are the same, then completely explain the or-
thogonality and /or nonorthogonality of their corresponding eigen-
VECtOrSs.

(b) Give an example of a matrix A that does not have a complete set of
eigenvectors and show that it is true.

(c) Show that every matrix A satisifies its own characteristic equation.



PROBLEM 4

Consider a system of » ordinary differential equations (ODEs)

axt) _ .
——=AX(0)

where A 1s a nX#» constant matrix and x(¢) is a column vector consisting of the »
unknowns, x,(f), x,(f), ... ... x (¢). Assume that A 1s NOT a diagonal matrix. Please

STATE and PROVE a suftficient condition under which the above system of n ODEs can

be transformed into # decoupled first order ODEs (Hint, consider the eigenvalues and
eigenvectors of A).
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