

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff
School of Mechanical Engineering

Ph.D. Qualifiers Exam - Fall Semester 2003

Applied Math EXAM AREA

Assigned Number (DO NOT SIGN YOUR NAME)

* Please sign your <u>name</u> on the back of this page —

1. Solve the inhomogeneous ODE given below for y(x) by the method of your choice.

$$y''-y'-2y=10\cos x$$
 for $x \ge 0$
with $y(0)=0$
and $y(x)$ is always finite.

2. The problem of solving a linear system of equations is frequently encountered in mechanical engineering. Consider the following non-homogeneous system of linear equations obtained from static equilibrium of known external forces and moments (F) and unknown reactions (c) acting on a planar rigid object:

$$Wc = F$$

where
$$\mathbf{W} = \begin{bmatrix} -1 & 3 & -2 \\ 3 & 0 & 3 \\ 2 & 1 & 2 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$, and $\mathbf{F} = \begin{bmatrix} 7 \\ -3 \\ -1 \end{bmatrix}$.

- a) State the necessary condition(s) for the <u>homogeneous</u> linear system of equations $\mathbf{Wc} = \mathbf{0}$ to have a non-trivial solution.
- b) Find the inverse of the matrix W. Show all calculations clearly.
- c) Solve the linear system of equations $\mathbf{Wc} = \mathbf{F}$ using the Gaussian elimination method.

3. The function y(x) is defined by the following differential equation and initial value:

$$\frac{dy}{dx} = f(x, y) = (2x+3)y,$$
 $y(0) = 1.$

Throughout this problem, please perform calculations by hand as far as possible. Show all of your steps.

- a) Use Euler's method and a step size of $h = \frac{1}{2}$ to derive an estimate $\hat{y}(1)$, i.e., the estimate of y(x) at x = 1. If the exact value is y(1) = 54.6, what is the error $\Delta y = y(1) \hat{y}(1)$?
- b) Expand y(x+h) in a second-order Taylor series and use it to derive an improved difference equation of the form:

$$y_{i+1} = y_i + \dots$$

- c) Use this improved method to come up with a new estimate (using again the step size $h = \frac{1}{2}$) and calculate $\Delta y = y(1) \hat{y}(1)$.
- d) You will find that the error from part (c) is still large. Find the analytical solution for y(x) and explain why the error for this particular problem is so large?
- 4. Consider two vector fields, **F** and **G**, defined in a three-dimensional domain *V* enclosed by a surface *S* with outward unit normal vector **n**. Assume that the following conditions hold:
 - a) **F** and **G** have the same divergence in V, i.e., $\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \operatorname{div} \mathbf{G} = \nabla \cdot \mathbf{G}$ in V.
 - b) **F** and **G** have the same curl in V, i.e., $\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \operatorname{curl} \mathbf{G} = \nabla \times \mathbf{G}$ in V.
 - c) \mathbf{F} and \mathbf{G} have the same normal components on S, i.e., $\mathbf{F} \cdot \mathbf{n} = \mathbf{G} \cdot \mathbf{n}$ on S.

Please do the following.

- (i) Use H = F G and Green's theorem to find a relationship between F and G.
- (ii) Explain whether the relationship between F and G you derived in (i) still holds if the condition (c) is replaced by
 - c') \mathbf{F} and \mathbf{G} have the same boundary value on S, i.e., $\mathbf{F} = \mathbf{G}$ on S.
- (iii) Based on your answers to (i) and (ii), make a statement about a vector field.