Problem 1:

a) Solve the following equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \frac{e^x}{x} \quad ,$$

with

$$y(1) = 1, y'(1) = 1.$$

b) If the equation were instead given as

$$x\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0,$$

what method would you use to solve it for a solution near x = 0 and why?

Problem 2:

Let's consider a system of *n* ordinary differential equations

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{A} \cdot \mathbf{x}(t), \tag{1}$$

where $\mathbf{x}(t)$ is a column vector consisting of n unknowns, $x_1(t)$, $x_2(t)$, $x_n(t)$, and \mathbf{A} is a $n \times n$ constant matrix. Let's further assume that \mathbf{A} is real and symmetric.

- (a). Let \mathbf{v}_m (m=1, 2, ... n) be the eigenvectors of \mathbf{A} and λ_m be their corresponding eigenvalues. Please find the general solution to (1) in terms of \mathbf{v}_m and λ_m .
- (b). If the initial condition for the above problem is given by

$$\mathbf{x}(0) = \mathbf{b} \,, \tag{2}$$

where **b** is a given $n \times 1$ constant vector, what is the solution to (1) that also satisfies the initial condition (2)?

Problem 3:

Consider the vector field $\mathbf{F} = yz\mathbf{i} + (1-x)y\mathbf{j} + (1+xz)\mathbf{k}$ in the 3-dimensional xyz space with unit vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} along x, y, and z, respectively.

- a) Is it possible to find a potential function $\varphi(x,y,z)$ such that $\nabla \varphi = \mathbf{F}$? why?
- b) Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \vec{n} \, dS$ where S is the surface of the upper unit hemisphere $S = \{(x,y,z): x^2 + y^2 + z^2 = 1, z > 0\}$ and \vec{n} is the unit vector normal to S.
- c) Evaluate the integral $\oint_C \mathbf{F} \cdot (dx\mathbf{i} + dy\mathbf{j} + dz\mathbf{k})$, where C is the boundary of the unit circle centered at (0,1,0): C={(x,y,z): $x^2+(y-1)^2=1$, z=0 }.
- d) Evaluate $\int_{S} (\nabla \times \mathbf{F}) \cdot \vec{n} \, dS$ where S is an arbitrary surface in the region D={(x,y,z): $z \ge 0$ } bounded by curve C in part (c): C={(x,y,z): $x^2+(y-1)^2=1$, z=0} and \vec{n} is the unit vector normal to S.

Problem 4: This is a question about the Fourier transform.

1) Consider a phase modulated signal $x(t) = \exp(i \Phi(t))$, where $\Phi(t)$ is a continuous and differentiable function of time (t) called the "instantaneous phase". The "instantaneous frequency $f_i(t)$ " is defined as

$$f_i(t) = \frac{1}{2\pi} \frac{d\Phi(t)}{dt}$$
 Eq. (1)

Compute $f_i(t)$ for the following two cases

- a) $\Phi(t) = 2\pi f_c t$ (i.e. a sinusoidal signal) or
- b) $\Phi(t) = 2\pi (f_c t + \alpha t^2 / 2)$ (i.e. a "Chirp" signal or "Linear Frequency Modulated" signal).

Describe briefly the time dependency of the "instantaneous frequency $f_i(t)$ "

2) For arbitrary time-domain function x(t), and a given time t, the "delay function" $R(\tau;t)$ is defined as:

$$R(\tau;t) = x(t + \tau/2)x(t - \tau/2)$$
 Eq. (2)

For a fixed value of the absolute time t, the function $R(\tau;t)$ is only a function of the time-delay τ . The Fourier transform W(f;t) of the delay function $R(\tau;t)$ (For a fixed value of t,) is given, as usual, by

$$W(f;t) = \int_{-\infty}^{\infty} R(\tau;t) \exp(-i2\pi f\tau) d\tau$$
 Eq. (3)

Hence the absolute time t can be viewed as a parameter that can change arbitrarily.

- a. For $x(t) = \cos(2\pi f_c t)$. Compute the corresponding "delay function" $R(\tau;t)$ and associated Fourier transform W(f;t) (For a fixed value of t);
- b. How does this relate to what you found in 1.a?
- 3) If X(f) is the Fourier transform of the function x(t), show that function W(f;t) can also be computed from the following Fourier transform (for a fixed value of f):

$$W(f;t) = \int_{-\infty}^{\infty} X(f + \upsilon/2) X^{*}(f - \upsilon/2) \exp(+i2\pi\upsilon t) d\upsilon, \qquad \text{Eq. (4)}$$

where the symbol * denotes complex conjugation.

<u>Hint:</u> Represent $X(f + \upsilon/2)X^*(f - \upsilon/2)$ in terms of x(t) by using the definition of the Fourier transform.