

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff
School of Mechanical Engineering

Ph.D. Qualifiers Exam - Spring Quarter 1997

Applied Mathematics
EXAM AREA
Assigned Number (DO NOT SIGN YOUR NAME)

Please sign your <u>name</u> on the back of this page—

Please print your name here.

The Exam Committee will get a copy of this exam and will not be notified whose paper it is until it is graded.

Applied Mathematics Ph.D. Qualifier Exam Spring Quarter 1997 Page 2

Problem 1

The response of a system is governed by the following pair of differential equations:

$$\ddot{x} + 2\dot{x} - 2\dot{y} - 4x = 0$$

$$\dot{y} + 5x - y = \exp(-t)$$

The solution of these equations is real.

- Part (a) Determine the most general *real* complementary solution of these differential equations.
- Part (b) What is the basic form of the particular solution? Identify the mathematical terms, but do not evaluate the associated coefficients.
- Part (c) Consider the case where these equations are associated with an initial value problem. What initial values at t = 0 must be specified in order to determine the coefficients of the complementary solution?

Problem 2

Consider the vibration of a string which is both displaced initially from its equilibrium position and released from this position with a specified velocity.

The mathematical problem for this situation is

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2},$$

$$u(0,t) = 0,$$

$$u(L,t) = 0,$$

$$u(x,0) = f(x),$$

$$\frac{\partial u(x,0)}{\partial t} = g(x),$$

where c, the phase speed, is the square root of the ratio of the tension in the string to its mass per unit length and f and g are specified functions of x, the distance along the string.

- a. Solve this problem using the method of separation of variables.
- b. Specifically determine all coefficients for the case when the string is released from an initial position given by

$$f(x) = \begin{cases} \alpha x, & 0 \le x \le L/2, \\ \alpha(L-x), & L/2 < x \le L \end{cases}$$

with zero initial velocity.

Applied Mathematics Ph.D. Qualifier Exam Spring Quarter 1997 Page 4

Problem 3

Consider the matrix equation Ax=b, where A is a 3x2 matrix (more equations than unknowns).

- a) What is meant by the column space of the matrix A?
 b) What is the general condition on the vector b for a solution to this system to exist?
 Discuss the geometric meaning of this condition. Write it in terms of a vector relation.
- c) Consider $\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ b_3 \end{bmatrix}$. Find the value of b_3 for a solution to exist. Then, find

the solution.

d) Find the rank of A.

Problem 4.

Let A be a symmetric $n \times n$ matrix with real elements. Knowing that an $n \times n$ symmetric matrix always has n linearly independent eigenvectors prove that

- a) All the eigenvalues of A are real.
- b) There exists an orthonormal set of eigenvectors $\{v_1, \dots v_n\}$.
- c) Find all the eigenvalues and an orthonormal set of eigenvectors for

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

d) Provide a simple *iterative* numerical routine, which does not involve any root finding, for approximating the *largest* eigenvalue and the corresponding eigenvector of A. Justify the convergence of your routine and illustrate it on matrix A in part (c).

Optional: Do part (e) of this problem for extra credit if you have sufficient time.

e) Suppose matrix A has n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$. Show that λ_2 is the largest eigenvalue of $A_1 = A - \lambda_1 v_1 v_1^T$. Use this fact to extend your algorithm in (d) to find all the eigenvalues of A.