RESERVE DESI

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff School of Mechanical Engineering

NRE/HP Qualifier Exam

Fall Semester 2000

Your ID Code

Day 1 – NRE/HP Fundamentals

Instructions

- 1. Use a separate page for each answer sheet (no front to back answers).
- 2. The question number should be shown on each answer sheet.
- 3. Answer 4 of the 6 questions attached.
- 4. Staple your question sheet to your answer sheets and turn in.

1. Assume that a stable lithium-containing proportional gas has been identified. Sketch the differential pulse height spectrum that you could expect when thermal neutrons are incident on a detector filled with this gas if it is highly enriched in ⁶Li and operating in the proportional region. Describe the features in this spectrum and their origin. If we used a standard proportional gas (e.g., P-10) and lined the inner walls of the detector with ⁶Li. sketch the pulse height spectrum that you would expect from incident thermal neutrons.

 m_n = 1.00866491 amu m_α = 4.001474918 amu $m_{6_{Li}}$ = 6.015122 amu $m_{7_{Li}}$ = 7.016003 amu m_{3_H} = 3.01605 amu $m_{2_{Li}}$ = 2.0141078 amu

- 2. a. A radioisotope source is known not to emit any gamma ray with energy of 511 keV, but a peak is observed at this energy in the recorded pulse height spectrum. Give two possible origins of this peak. Note, the presence of a second source will not be considered a legitimate reason.
 - b. Listed below are a number of parameters of interest in gamma-ray spectroscopy using scintillation detectors:
 - i. Density of detector medium.
 - ii. Average kinetic energy required to create a scintillation photon in the crystal.
 - iii. Average atomic number (Z-value) of detector medium.
 - iv. Geometry of source-detector system.
 - v. Gain of photomultiplier tube.
 - vi. Quantum efficiency of photocathode in the PMT.
 - vii. Gain of amplifier used between the detector and multichannel analyzer.
 - viii. Fraction of light generated in crystal that reaches the photocathode of the PMT (light collection efficiency).

Identify those parameters from this list that have a major influence on the detector intrinsic peak efficiency. Repeat, but now identify those that have a major influence on energy resolution.

3. A ten-minute measurement of a source yields 15,346 counts. Exactly 4 days later a twenty-minute measurement yields 14,879 counts. Associated background measurements yield 392 and 411 counts, respectively, over thirty minutes. Based on this data, determine the half-life of the isotope. Also, determine the uncertainty of this half-life due to counting statistics.

- 4. In the following scenarios of <u>elastic scattering</u> between monoenergetic neutrons and various types of nuclei: (a) *1-keV* neutrons interacting with ¹H nuclei, (b) *1-keV* neutrons interacting with ¹C nuclei, (c) 10-MeV neutrons interacting with ¹C nuclei, and (d) 10-MeV neutrons interacting with ²³⁸U nuclei.
 - (8) a. Which scenario produces a scattered neutron that is most isotropic in the center-of-mass system? Apply partial-wave analysis for each scenario to justify your answer. Note that the radius of a nucleus can be estimated by $1.2 \times A^{1/3}$ fm.
 - (2) b. Which scenario produces a scattered neutron that is most isotropic in the laboratory system? Why?

5. a. Use the following Compton-scattering formula (simplified from the Klein-Nishina formula) to calculate the mass attenuation coefficient (μ/ρ) for 1-MeV photon interacting with aluminum (A=27, Z=13, and $\rho=2.7$ g cm⁻³):

$$\left(\frac{d\sigma}{d\Omega}\right)_{e^{-}} = \frac{r_{e}^{2}}{2}(1+\cos\theta)$$

where r_e = the classical electron radius = $2.818 \times 10^{-13} cm$, and θ is the scattering angle.

b. Calculate the average energy of a scattered electron.

6. In the reaction $\alpha + {}^9Be \rightarrow {}^{12}C + n$, find the maximum and minimum neutron energies when the incident a energy is 5.0 MeV. The rest mass for neutron is 1.008665 u, where 1 u = 931.5 MeV. The atomic masses for α , 9Be , and ${}^{12}C$ are 4.002603 u, 9.012182 u, and 12.00000 u, respectively.