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Acoustics Qualifying Exam, Fall, 1996

Work all 4 problems. Show all of your work. Clearly state all assumptions.
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A plane harmonic wave p, with wavenumber k is incident on a pressure release
( B,,.. = 0 boundary condition) sphere of radius a . The scattered pressure is defined as
the difference between the total pressure and the incident pressure. That is

pscat = ptota[ - pinc
a. Assuming that the sphere is acoustically small (ka<<) find expressions for the

forward scattered(8 = 0) and back scattered ( 6 = 180°) farfield pressure by
approximating the scattered field as the sum of the fields of a point monopole and a point
dipole located at the center of the sphere. Justify this approach. Sketch the magnitude of
the forward and backscattered pressure as a function of ka.

b. At very high frequencies (ka>>1) the sphere casts a shadow (with circular cross-section)
in the nearfield behind the source. Assuming that the shadow is very sharply defined,
estimate the farfield forward scattered pressure by considering the radiation from a plane
located on the far side of the source. (See above figure) How does the magnitude of the
forward scatter at low ka compare with its magnitude at high ka?
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Structural acoustic response of finite rib-reinforced plates

Richard F. Keltie
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(Received 4 May 1992; accepted for publication 23 April 1993)

The structural acoustic response of finite fluid-loaded fiat plates with arbitrary attached rib
stiffeners was formulated. The ribs were modeled as simple inertial reactions providing
transverse forces to the plate structure. The plate response and the surface acoustic pressure
distribution were written as expansions in terms of the in vacuo plate eigenfunctions. The
expansion coefficients were obtained by solving a set of simultaneous complex linear algebraic
equations. Results were obtained for an unribbed steel plate, and for a steel plate with a set of
uniform ribs, in response to harmonic line-force excitation. The results demonstrated the
potential for significant reductions in the vibration level by approximately 90% at certain
frequencies because of the presence of the attached ribs. These reductions were attributed to the
interaction of two nearly resonant modes in a “beating” phenomenon. It was shown that this
“beating” arises because of the presence of the ribs. In order to quantify this effect, a quantity
called the “rib function” was defined and was shown to be dependent upon the rib masses, their

locations, and the in vacuo mode shapes.
PACS numbers: 43.40.Dx

INTRODUCTION

The vibration and acoustic response of structures with
attached stiffeners or masses has been the subject of nu-
merous studies, which may be grouped into a few catego-
ries: (a) periodic systems of infinite extent;'® (b) infinite
systems with a finite number of attached stiffeners;>'* and
(c) infinite systems with slightly disordered nearly periodic
attached systems.'* " In (a), the classical results involving
passbands and stop bands were obtained. These results in-
dicate that in periodic systems, the reflected and transmit-
ted structural waves interact in such a manner as to allow
certain frequencies to pass without attenuation, while other
frequencies are attenuated dramatically. This class of prob-
lem also produced the concept of propagation constants in
structural wave transmission. Recent work involving the
addition of fluid loading in this class of problem indicates
that the fluid path allows for energy propagation along the
structure, mitigating the strong stop-band effects.'®

In (b), emphasis was placed on characterizing the ef-
fects of one, or a few, attached stiffeners. The primary item
of interest was the degree to which an incident structural
wave was attenuated by the attached system, and how
small numbers of attached systems could interact. Cate-

.8ory (c) consists of relatively recent developments in the

application of what is called “Anderson localization” to
structural vibration. This phenomenon may be described
by the strong localization of the resulting vibration in the
neighborhood of the excitation. The underlying physics in-
volves the slight phase shifts of the reflected waves due to
the irregularity in the stiffeners’ locations. These phase
shifts disrupt the coherence necessary to propagate energy
over substantial distances.

In comparison to the three categories just discussed,
there has been relatively little activity dealing with finite
systems with attached ribs. While the wave approach has

been favored for its ease of manipulation and interpretation
in dealing with infinite systems, finite systems lend them-
selves to a modal description. Such a description is often
less amenable to interpretation for physical understanding,
but it is representative of practical engineering systems and
structures. The results presented here are an attempt to
address the finite system case and to develop physical un-
derstanding of the effects of ribs on the associated struc-
tural response.

I. FORMULATION

The system considered is shown schematically in Fig.
1. Consider a uniform plate lying in the x-y plane with an
acoustic medium above the plate, z>0, and a vacuum be-
low, z<0. The plate has finite extent in the x direction
given by L and is of infinite extent in the » direction. The
supports of the plate are assumed to be described by simple
supports. The flexural stiffness of the plate is denoted by D
and the mass/unit area of the plate is denoted by ph. If the
plate is excited by a line force of amplitude/unit length F,
and circular frequency w acting along x=x,, then the
equation of motion in terms of the plate displacement w(x)
is given by

d*w(x) 2
DT—phw w(x)=Fp5(x—x4) —p,(x,0)

R
- 2 px), (1)

re=|

where p,(x,0) is the acoustic pressure acting on the plate’s
surface and the term p,(x) represents the reaction pressure
from each of the R attached ribs. The ribs are considered to
react only in a normal direction, so that any moment re-
action or in-plane reactions are neglected. Furthermore,
because of the presence of the line force there will be no
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FIG. 1. Schematic diagram of problem geometry.

fiexure of the ribs, so that they provide purely inertial re-
actions. Then the p,(x) are given by

p(x)=—m0*w(x)6(x—x,), (2)

where m, and x, represent the mass per unit length and the
location of the rth ribs, respectively. This elementary rib
model is used in order to expedite the development of a
model that incorporates completely arbitrary rib sizes and
locations.

The acoustic pressure above the plate, p,(x,z), satisfies
the Helmholtz equation

Fp. Fp,
—f, Pkf,uo 3)

where kj is the acoustic wave number (w/c;). The bound-
ary condition on the equality of the normal velocity of the
plate and the normal particle velocity in the fluid is given
by

P, )
% :=o= — pow w(x), (4)
where p, is the ambient acoustic fluid density.

The plate displacement may be wntten as an expan-
sion using the in vacuo vibration mod&s, so that

w(x)= Y W oba(x), (5

n=1
where the ¢,(x) functions are the normalized plate eigen-
functions:

é,(x)= \2/phL sin(nmx/L). (6)

The acoustic pressure on the surface z=0 is written as

N
Pa(x,0) = Zl Pobo(x). (7N

The series for the plate displacement and the series for
the acoustic pressure are now substituted into Eq. (1). The
resulting equation is then multiplied by an arbitrary nor-
malized mode shape, say, ¢,(x), and integrated over the
extent of the plate. Because of the orthogonality of the
modal functions, the resulting equation simplifies to

2 _k
(w; @ )W;—Fo¢:(x0) h

+ 2 mw’¢,(x,) 2 Waba(x,), (8)

r=1
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In order to determine the pressure expansion coeffi-
cients P, in terms of the displacement expansion coeffi-
cients W,, the Fourier transforms of acoustic pressure and
the plate displacements are introduced:

f’.(a.2)=J‘m Pa(x2)e 1% dx )
and
W(a)= f ¥ w(x)e—’* dx. (10)

By utilizing the boundary condition [(Eq. (4)], the surface
acoustic pressure may be given by the inverse Fourier
transform:

Po(x,0)= ¢/** da, (11)

— jpo’® f-’ W(a)
2T cw —a

where the correct branch of the radical is defined by

‘!E—a, k0>|alv
—at= 12
K==\, TR |l >k 12

The series expansion for the surface acoustic pressure
and the inverse transform of the plate displacement are
now substituted into Eq. (11). The resulting equation is
then muitiplied by ¢,(x) and integrated over the plate’s
surface. The relationship between the pressure expansion
coefficients and the displacement expansion coefficients is
then given by

- h X
P= “;_W £ 3wz, (13)
T A=1

where Z,, is defined as

.(a)¢‘( a)
f da, (14)
and ®,(a) is the Fourier transform of the normalized
mode function. Equation (14) demonstrates the essential
modal coupling arising because of the fluid loading effects.
The form of the coupling coefficient Z,; has been discussed
in great detail by Davies.”

Upon substituting for P, into Eq. (8), the final equa-
tion for the unknown modal expansion coefficients is given
by

N
(02 —0?) W,=Fo,(x0) + }2 WG

+ 2 _gl H,W,, (15)
where the following definitions have been made:
Gu=(jpod*/27)Z,, (16)
and
H,=0"¢,(x,)9,(x,). amn
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Problem I

Consider an harmonic plane wave incident at an angle 6, on an interface (y=0). Its
complex amplitude is written as:

A

D ikx ik
B =Be'e

Z,=pc

v

Two students are asked to derive an expression for the (pressure amplitude) reflection
coefficient R. Student #1 writes Z, =p/v,, at y=0, and derives an expression for the
reflected and the total pressure in the upper medium, and derives

R__Sin¢| —ZI/Z2
sing, +Z,/Z,

But student #2 understands the problem as a transmission problem into a second medium
where the refracted wavenumber becomes k,. He writes the continuity equations at the
interface in terms of R and T (the amplitude reflection and transmission coefficients), and,
using the trace velocity matching principle, derives an expression for the reflection

coefficient in terms of the grazing angle ¢,

R SN0 —(Z,/Z)\1-(k [k,) cos™ §,
" sing, +(Z,/Z,)\1=(k, /k,)  cos’ ¢,

(a) Retrace the steps of student #1
(b) Retrace the steps of student #2
(c) Why are the resultrs different? Are they both correct?
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Problem I1.

When a high power laser pulse is focused on an air/water interface, it often produces a
localized sudden impact force on the surface. The force is caused by the sudden
evaporation and water ejection from the illuminated region into the upper medium (air).
Conservation of momentum requires that a localized force of equal but opposite sign be
imparted into the water. The force is distributed in a volume defined by the laser spot size
on the water surface and the penetration depth of the laser light inside the water. Let this
source term (per unit volume) be f(t,R)=g(t)F(K), where R is a function of (x,y,z). [g(t) is
related to the laser pulse shape (time) and F(R) is related to the laser intensity distribution
within the illuminated volume. In general, the absorption depth is very short compared to a
typical acoustic wavelength.]

(a) From the basic conservation laws, derive a linearized acoustic wave equation for
propagation in the lower fluid (water), including the force density term f(t,R). (Neglect
thermal expansion effects)

water

(b) Make an educated guess as to the nature of such a source, i.e. monopole / dipole /
quadrupole type source. Justify your answer.



