RESERVE DESK

JUL 2 4 2003

07-24-03 A09:24 IN

GEORGIA INSTITUTE OF TECHNOLOGY

The George W. Woodruff
School of Mechanical Engineering

Ph.D. Qualifiers Exam - Spring Semester 2003

Acoustics
EXAMAREA

Assigned Number (DO NOT SIGN YOUR NAME)

■ Please sign your <u>name</u> on the back of this page—

Below its resonance frequency a thickness polarized piezoelectric sphere of radius a produces a radial displacement d(t) which is proportional to the input voltage:

$$d(t) = \Gamma E(t)$$

where Γ is a constant involving the piezoelectric properties and dimensions of the sphere.

- a. Assuming a sinusoidal voltage drive, $E(t) = E_0 \cos(\omega t)$, what is the magnitude of the pressure (as a function of ω) at some farfield range R produced by such a transducer when radiating into an infinite medium with sound speed c and density ρ ? [Do not make any assumptions about the size of ω]
- b. If E(t) is some arbitrary function but the transducer is acoustically small [i.e. ka << 1 for the highest wavenumber of interest] what is the farfield pressure p(R,t)?
- c. If E(t) is some arbitrary function but the transducer is acoustically large [i.e. ka >> 1 for the smallest wavenumber of interest] what is the farfield pressure p(R,t)?

Part II

A circular piston of radius a is located in the plane z = 0. The piston oscillates in the z direction with a velocity given by $v_z = v_o e^{-iat}$ as shown above. The remainder of the x-y plane is rigid and immovable. A second rigid immovable plane is located a z=L. As you recall, in the absence of the second plane the acoustic pressure on the z-axis would be given by

$$p(z) = \frac{v_o}{\rho c} \left[e^{ikz} - e^{ik\sqrt{z^2 + a^2}} \right]$$

What is the acoustic pressure on the z-axis when the rigid plane at z=L is present?

A source radiating a pressure field $(p_0/r)\sin\omega(t-r/c)$ is placed a distance l away from an 'anti-source' which generates a pressure $-(p_0/r')\sin\omega(t-r'/c)$ at a distance r' away as shown in the figure below.

- a) Calculate the acoustic power radiated by this double source combination. You can assume that the observer is far away from the sources, i.e. $l/r \ll 1$.
- b) Compare your result with the power that would be radiated by each source in isolation, especially in the limits of very small and very large values of *l*. Comment on the differences, if there are any.

Problem 3

A semi-infinite fluid 1 overlays fluid layer 2 whose depth is H. The sound speeds satisfy $c_2 < c_1$, and the respective densities are ρ_1 and ρ_2 . The floor is composed of a locally reacting material having specific impedance ξ . A plane wave at frequency ω in medium 1 is obliquely incident at angle θ_1 on the interface between the fluids.

- (a) Derive a set of algebraic equations whose solution would yield the reflection coefficient R for medium 1.
- (b) Prove whether or not there are there any sets of parameters ω , c_2 , c_1 , ρ_1 , ρ_2 , θ_1 , H, and ξ for which R=1.
 - (c) Is R=1 the largest possible reflection coefficient? Justify your answer.

