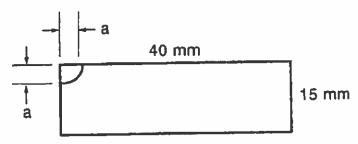

PLEASE NOTE: Answer 3 out of the 4 problems. In case you answer the 4 problems, clearly state which 3 problems you want to be graded.

## Problem #1




The shaft shown in the figure above is driven by a belt. The tension in the belt on the tight side is 3P/2 and the tension on the slack side is P/2.

- (1) Determine the stress state at point A (located on the lateral side of the shaft).
- (2) Determine the stress state at point B (located on the top of the shaft).
- (3) If the yield strength of the shaft material is  $\sigma_Y$ , determine the maximum value of P to avoid yielding of the shaft using the von Mises yield criterion.

## Problem #2

An aircraft structural member made of 7075-T6 aluminum has a cross section as shown below. A quarter circular crack of size  $a_i = 0.5$  mm is present, and the member is subjected to a uniaxial stress, S, normal to the cross section. Assume the crack keeps its quarter circular shape as it grows.

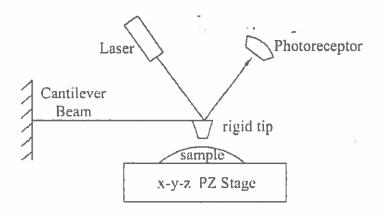
- (a) Estimate the final crack size,  $a_f$ . Assume the crack size responsible for fully plastic yielding is larger than the critical crack size for brittle fracture.
- (b) How many cycles between  $S_{\text{max}} = 336$  and  $S_{\text{min}} = -68$  MPa can be applied before failure is expected?
- (c) How many cycles between  $S_{\text{max}} = 336$  and  $S_{\text{min}} = 68$  MPa can be applied before failure is expected?



| Material                | Yield<br>σ <sub>o</sub> | Toughness  Klc     | Walker Equation                                  |                                   |      |             |         |
|-------------------------|-------------------------|--------------------|--------------------------------------------------|-----------------------------------|------|-------------|---------|
|                         |                         |                    | Co                                               | Co                                | m    | γ           | γ       |
|                         | MPa<br>(ksi)            | MPa √m<br>(ksi√in) | $\frac{\text{mm/cycle}}{(\text{MPa}\sqrt{m})^m}$ | in/cycle<br>(ksi√in) <sup>m</sup> |      | $(R \ge 0)$ | (R < 0) |
| 7075-T6 Al <sup>2</sup> | 523<br>(75.9)           | 29<br>(26)         | 2.71 × 10 <sup>-8</sup>                          | 1.51 × 10 <sup>-9</sup>           | 3.70 | 0.641       | 0       |

Note: The following Walker equation should be used to predict the crack growth rates under various load ratios,  $R = S_{min}/S_{max}$ :

$$\frac{da}{dN} = C_0 (1 - R)^{m(\gamma - 1)} (\Delta K)^m$$


with m,  $\gamma$  and  $C_0$  given in the above table, and with  $\Delta K$  the *nominal* stress intensity factor range  $(\Delta K = K_{\text{max}} - K_{\text{min}})$ .

The stress intensity factor K for that particular crack configuration can be approximated as:

$$K = 0.722S\sqrt{\pi a}$$

#### Problem #3

The atomic force microscope (AFM), first reported in 1986, has become a widely used tool to study forces between and within individual molecules on the order of picoNewtons ( $10^{-12}$  N) and the topology of surfaces, including cells, with resolution on the order of nanometers. A schematic of the basic design of an AFM probe is shown below. It consists of a cantilever beam with a rigid end tip; the laser and photo-detector are used to measure changes in the angle of the laser light (i.e., the end slope  $\phi = \frac{d+}{dx}(x=L)$  that are associated with the deflection (+) of the cantilever. If the cantilever beam (which has a length L, a second moment of area  $I_{\pm}$ , and a Young's modulus E) is lowered onto the soft sample, the sample will impose a force P on the cantilever tip. Given that we can measure the end slope  $\phi$  of the cantilever, please answer the following.



- (a) Let  $\delta = \psi(x = L)$  be the deflection at the end of the beam. What is the deflection  $\delta$  in terms of the material parameters, geometry, and measured values? Note: this result should NOT include the unknown applied load P.
- (b) What is the force P in terms of material parameters, geometry, and measured values?
- (c) The effective stiffness, k, of the cantilever beam is defined through the relation  $P = k\delta$ . What is the value of k in terms of material parameters and geometry? Note, given the similarity between  $P = k\delta$  and the classical force displacement relation for a spring,  $f = \hat{k}\hat{\delta}$ , k is often called the AFM spring constant.
- (d) If  $L=400 \,\mu\text{m}$  and the beam is rectangular and made of silicon ( $E=166 \,\text{GPa}$ ) and if the width of the beam b=5h, where h is the height of the beam, what value of h will yield an effective stiffness of  $k=1.0 \,\text{N/m}$ ?

# **Beam Equations**

$$\sigma_{xx}(x,y) = \frac{-M(x)y}{I_{zz}} \qquad \sigma_{xy} = \frac{V(x)Q_p(y)}{I_{zz}b}$$

$$\frac{dV}{dx} = -q(x) \qquad \frac{dM}{dx} = V(x) \qquad EI_{zz} \frac{d^2 + y}{dx^2} = M(x)$$

First Moment of Area of a rectangular cross section (above point p)

$$Q_{p} = \int y dA_{p} = \int_{-b/2}^{b/2} \int_{y}^{h/2} y dy dz = \frac{b}{2} \left( \frac{h^{2}}{4} - y \right)$$

Second Moment of Area of a rectangular cross section

$$I_{zz} = \frac{bh^3}{12}$$

### Problem #4

A researcher deposits via sputter deposition at  $50^{\circ}$ C a thin film of aluminum (200 nm thickness) on a silicon substrate that is 0.5 mm thick (rectangular cross-section: L = 38 mm and W = 10 mm). The substrate and thin film are stress free at the deposition temperature. Assume that there is no delamination possible between the film and the substrate.

|             | Al   | Si  | PMMA  |
|-------------|------|-----|-------|
| E (GPa)     | 70   | 173 | 3.4   |
| ν           | 0.33 | 0.1 | 0.35  |
| α (10°6/°C) | 23   | 3   | 54000 |

- a) Calculate the change in curvature of the assembled system when the silicon with the aluminum film are removed from the chamber and are at room temperature (25°C).
- b) Estimate the thickness of the aluminum thin film that is to be deposited on a polymeric substrate (e.g. PMMA) at the deposition temperature of 50°C (assume again stress free film and substrate at the deposition temperature) if the entire assembly is to become a circular tube (see sketch) at room temperature (25°C).
- c) Calculate the stresses that will develop in the aluminum film (part b).